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1. Compute the value of the following integrals (Hint: You might want to use Cauchy’s integral
formula to get the answer without long computations!):

(a)
�

γ

e2z

z
dz with γ = {z : |z| = 2} oriented counter-clockwise.

(b)
�

γ

z3 + 2z2 + 2
z − 2i

dz with γ = {z : |z − 2i| = 1} oriented clockwise.

(c)
�

γ

sin(3z + π
4 )

(z − π)2 dz with γ = {z : |z − π| = 3} oriented counter-clockwise.

2. Similarly, compute the following integrals:

(a)
�

γ

e2z

(z − 1)(z2 + 4) dz where γ is the bounday of the rectangle

R = {z : −2 ⩽ Re(z) ⩽ 2, −1 ⩽ Im(z) ⩽ 1}

oriented clockwise.

(b)
�

γ

sin(z2)
cos(z) dz with γ = {z : |z − i| = 1} oriented counter-clockwise. (Hint: You might

want to first compute the zeroes of the cos(·) function by examining its real and imaginary
parts.)

3. Let γ be a simple, closed and counter-clockwise oriented regular curve in C. What are the
possible values the following integral can take (depending on the exact form of γ):

�
γ

cosh(z2 + 1)
(z − 2)3 dz.

4. For
f(z) = eiz

(z − i)2 ,

compute the integral
�

γ

f(z) dz in the following cases:

(a) γ = {z : |z| = 2} oriented clockwise.
(b) γ is the boundary of the rectangle {z : |Re(z)| ⩽ 4, |Im(z)| ⩽ 1

2} oriented counter-
clockwise.
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(c) For some R > 1, γ is the closed curve formed by the union γ1 ∪ γ2, where γ1(t) = t for
−R ⩽ t ⩽ R and γ2(s) = Reis for s ∈ [0, π] (draw a picture to visualise the curve in the
comlex plane).
Bonus question: In the limit R → +∞, show that the integral

�
γ2

f(z) dz goes to 0.
Based on that, can you compute the value of

�
R

f(z) dz?

5. Complex integrals have historically proved to be a valuable tool in calculating complicated
integral expressions, even in cases where the starting integrals do not seem to involve complex
numbers at all. To illustrate this, we will use the techniques of complex integration to calculate

� +∞

−∞
e−x2 cos(2bx) dx =

√
πe−b2

, (1)
� +∞

−∞
e−x2 sin(2bx) dx = 0,

where b > 0 is any (real) given constant.

(a) Show that the function f(z) = e−z2 is entire.
(b) For any R > 0, consider the path γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4 considered below:

γ1

γ3

γ2γ4

0−R R

b · i

Show that
�

γ

f(z) dz = 0.

(c) Show that, as R → +∞,
�

γ2
f(z) dz,

�
γ4

f(z) dz → 0.

(d) Using the fact that
� +∞

−∞ e−x2
dx =

√
π, deduce from the above that (1) holds.
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6. Let D ⊂ C be an open set and f : D → C be a continuous function. Assume that there exists a
holomorphic function F : D → C which is an antiderivative of f ; this means that F ′(z) = f(z).
Show that, for any regular curve γ : [a, b] → D,

�
γ

f(z) dz = F (γ(b)) − F (γ(a)).

(Hint: You will need to use the chain rule to compute d
dt

(
F (γ(t)

)
.)

In the case when D = C \ {0} and f(z) = 1
z
, show that no antiderivative of f exists on D. How

is this consistent with what we know about log(z)?

Remark: In the case when D is simply connected, the above formula can be used to show
that any holomorphic f : D → C has an antiderivative.
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Solutions
1. Let us recall Cauchy’s integral formula:

�
γ

f(z)
(z − z0)n+1 dz = 2πi

n! f (n)(z0) where γ is a simple,

closed and positively oriented (i.e. counter clockwise) path inside an open and simply connected
set D ⊆ C, z0 ∈ D and f : D → C is holomorphic. Recall that, in practice, it suffices for f to
be holomorphic in the interior of γ.

(a)
�
γ

e2z

z
dz =

�
γ

e2z

z − 0 dz = 2πie2·0 = 2πi

The expression is valid since the function f(z) = e2z is holomorphic in D = Int(γ) = C(0, 2)
(b)

�
γ−

z3 + 2z2 + 2
z − 2i

dz = −
�
γ+

z3 + 2z2 + 2
z − 2i

dz

f(z)=z3+2z2+2= −2πif(2i)
= −2πi(−8i − 8 + 2) = −16π + 12πi

Since we originally want to compute this integral along the negatively (i.e. clockwise)
oriented closed path γ−, we use the fact that when we switch the orientation of a curve, the
corresponding integral changes sign. The plus (minus) sign refers to a counter-clockwise
(clockwise) orientation.

(c)
�
γ

sin(3z + π
4 )

(z − π)2 dz
f(z)=sin(3z+ π

4 )
= 2πi

1! f ′(π) = 2πi
d sin (3z + π/4)

dz

∣∣∣∣∣
z=π

= 6πi cos (π + π/4) = −3
√

2πi.

2. Similarly to exercise 1, we make an extensive use of the Cauchy integral formula to avoid
difficult computations when possible:

(a)
�
γ−

e2z

(z − 1)(z2 + 4) dz = −
�
γ+

e2z

(z − 1)(z2 + 4) dz = −2πif(1) = −2πi · e2·1

12 + 4 = −e2

5

where the function f(z) = e2z/(z2 +4) is holomorphic over the rectangular domain defined
as R = {z : −2 ⩽ Re(z) ⩽ 2, −1 ⩽ Im(z) ⩽ 1}. The sign change reflects the clockwise
integration direction.
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(b) Let us first look at the zeros of the complex cosine function:

cos (z) = eiz + e−iz

2 = ei(x+iy) + e−i(x+iy)

2 = e−yeix + eye−ix

2

= e−y

2 (cos (x) + i sin (x)) + ey

2 (cos (x) − i sin (x))

= cos (x)
(

ey + e−y

2

)
− i sin (x)

(
ey − e−y

2

)

= cos (x) cosh (y) − i sin (x) sinh (y) with {x, y} ∈ R

we see that the real part is only zero when xk = π/2+kπ (cosh (y) is never equal to zero),
and implies for the imaginary part that y = 0. We conclude that the complex cosine
has the same zeros as the real function. Returning to the integral, the path γ is a circle
centered at i of radius 1. We notice that all the singular points of f(z) = sin (z2)/ cos (z),
i.e. the zeros of cos (z), lie outside the integration domain defined by γ. The distance
from the center of the circle to one of the closest zeros d =

√
12 + (π/2)2 ≃ 1.58 is larger

than the radius of the circle.

R

i

π
2

π−π
2−π

i

2i

3π
2−3π

2

×× ××

γ

The zeros of cos (z) are indicated by the red crosses.

Using Cauchy’s theorem, the integral is simply
�
γ

sin (z2)
cos (z) dz = 0.

3. We can distinguish three different case scenarios, all depending on the location of the zero
z0 = 2 with respect to the integration path γ. We define D ⊂ C as the open subset whose
border is given by ∂D = γ.

– z0 /∈ D and z0 /∈ γ =⇒
�
γ

cosh (z2 + 1)
(z − 2)3 dz = 0 (by Cauchy’s theorem).

– z0 ∈ γ =⇒
�
γ

cosh (z2 + 1)
(z − 2)3 dz is ill-defined.

– z0 ∈ D =⇒
�
γ

cosh (z2 + 1)
(z − 2)3 dz = 2πi

2!
d2

dz2 cosh (z2 + 1)
∣∣∣∣∣
z=2

= iπ{2 sinh (5) + 16 cosh (5)}
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4. (a) The point z0 = i belongs to the domain delimited by γ. We use the extended Cauchy’s
integral formula and recall that the integration is taken clockwise (while Cauchy’s formula
requires the integration to be taken counter-clockwise):

�
γ−

eiz

(z − i)2 dz = −
�

γ+

eiz

(z − i)2 dz = −2πi

1!
d

dz
eiz

∣∣∣∣∣
z=i

= −2πi · iei·i = 2π

e

(b) The point z0 = i is outside of the rectangular subset defined by γ′ = {z : |Re(z)| ⩽
4, |Im(z)| ⩽ 1

2}. Cauchy’s theorem indicates that this integral is zero.
(c) The path Γ = γ1 ∪γ2 has a different shape than the one in point (a), however the function

f is holomorphic in the region between Γ and the curve γ+ from part (a) (since f is
holomorphic on C \ {i}). Moreover, the curves Γ and γ+ have both the same orientation
and are simple closed curves. The result of the integral over Γ is therefore the same as
the integral over γ+, or, equivalently, the opposite to the final answer in (a):

�
Γ

f(z) dz = −2π

e
. (2)

We can now use this results to compute the integral over R (see also the figure below):
As R → +∞, the part γ1 of the curve covers the whole of the real axis (with orientation
from −∞ to +∞, so we have:

lim
R→∞

�

Γ

f(z) dz = lim
R→∞

�
γ1+γ2

f(z) dz = lim
R→∞

�
γ1

f(z) dz + lim
R→∞

�
γ2

f(z) dz

=
+∞�

−∞

f(t) dt + lim
R→∞

�
γ2

f(z) dz.

In view of (2), we thus have:
+∞�

−∞

f(t) dt = −2π

e
− lim

R→∞

�
γ2

f(z) dz.

We will now parametrise γ2 and show explicitly that limR→∞
�
γ2

f(z) dz = 0.

∣∣∣∣∣∣∣
�
γ2

f(z) dz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
π�

0

f(Reis · Rieis ds

∣∣∣∣∣∣∣ ⩽
π�

0

∣∣∣f(Reis)Rieis
∣∣∣ ds =

π�

0

∣∣∣∣∣ eiReis

(Reis − i)2 Rieis

∣∣∣∣∣ ds

⩽

π�

0

∣∣∣∣∣ R

(Reis − i)2

∣∣∣∣∣ ds
⋆
⩽

π�

0

∣∣∣∣∣ R

(R − 1)2

∣∣∣∣∣ ds = Rπ

(R − 1)2
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where the inequality with ⋆ is obtained by using the inverse triangular relation |Reis − i| ⩾
| |Reis| − |i| | = |R − 1|. Therefore, this integral is necessarily zero in the limit R → ∞
since its absolute value also tends to zero:

lim
R→∞

∣∣∣∣∣∣∣
�
γ2

f(z) dz

∣∣∣∣∣∣∣ ⩽ lim
R→∞

Rπ

(R − 1)2 = 0

R

i

R R

i
γ−

γ′

Γ

×

Paths as defined in exercise (4) with the pole at z0 = i. Arrows specify the direction of rotation
along the curves.

5. (a) The function f(z) = e−z2 = e−(x2−y2)[cos (2xy) + i sin (2xy)] is a product of e(·), cos (·)
and sin (·) which are all holomorphic on C. Therefore, f(z) is entire.

(b) Since the function is entire, its integration over any closed path γ ⊂ C is null (cf. Cauchy’s
theorem).

(c) We show that when R → ∞, the integral over γ2 also goes to zero. We first parametrise
the curve: γ2(t) = R + it with t ∈ [0, b] and carry the integration:

lim
R→∞

�
γ2

f(z) dz = lim
R→∞

b�

0

f(γ2(t))γ′
2(t) dt = lim

R→∞

b�

0

e−(R+it)2
i dt

= lim
R→∞

e−R2

b�

0

et2
e−i2Rti dt

⋆= 0

The equality with ⋆ derives from the fact that

lim
R→∞

∣∣∣∣∣∣∣
�
γ2

f(z) dz

∣∣∣∣∣∣∣ ⩽ lim
R→∞

e−R2

b�

0

∣∣∣ et2
e−i2Rti

∣∣∣ dt ⩽ lim
R→∞

e−R2

b�

0

et2
dt

︸ ︷︷ ︸
finite number

= 0

We obtain the same result for the computation over γ4 since its parametrisation is equiv-
alent.
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(d) We can decompose the integration over the different parts γi and parametrise the curve
γ3(t) = Rt + ib with t ∈ [1, −1]:

0 = lim
R→∞

�
γ

f(z) dz = lim
R→∞


�
γ1

f(z) dz +
�

�
�
�

��>
0�

γ2

f(z) dz +
�
γ3

f(z) dz +
�
�

�
�
��>

0�
γ4

f(z) dz


⇐⇒ lim

R→∞

R�

−R

e−x2
dx + lim

R→∞

−1�

1

e−(R2t2−b2+2Rbti)R dt = 0

⇐⇒ lim
R→∞

R�

−R

e−x2
dx − lim

R→∞

1�

−1

e−(R2t2−b2+2Rbti)R dt = 0

⇐⇒
∞�

−∞

e−x2
dx

︸ ︷︷ ︸√
π

− eb2 lim
R→∞

1�

−1

Re−R2t2 [cos (2Rbt) + i sin (2Rbt)] dt = 0

⋆⇐⇒
√

π − eb2 lim
R→∞

R�

−R

e−x2 [cos (2bx) + i sin (2bx)] dx = 0

⇐⇒
∞�

−∞

e−x2 cos (2bx) dx + i

∞�
−∞

e−x2 sin (2bx) dx =
√

πe−b2 + i · 0

By comparing the real and imaginary part of the last equivalence, we can then infer on the
two relations given in this exercise. The equivalence marked by ⋆ follows from a change
in variable {Rt → x ; Rdt → dx}.

6. If an antiderivative F : F ′(z) = f(z) exists, it follows that:

�
γ

f(z) dz =
b�

a

f(γ(t))γ′(t) dt =
b�

a

F ′(γ(t))γ′(t) dt =
b�

a

d

dt
[F (γ(t))] dt = F (γ(b)) − F (γ(a))

In particular, if we integrate f over any closed loop, the above equality tells us that the integral
should be zero, since the function evaluated at the start and end point takes the same value.
Now consider the function f(z) = 1/z integrated around the origin over γ(θ) = Reiθ with
θ ∈ [0, 2π]:

�
γ

f(z) dz =
�
γ

1
z

dz =
2π�

0

1
Reiθ

Rieiθ dθ = 2πi ̸= 0.
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If an antiderivative of f(z) = 1/z existed on C\{0}, then its integral over a closed curve should
be zero since γ(0) = γ(2π). However, this is not the case as shown in the counter-example
above.
In the domain C \

{
z : Re(z) ⩽ 0, Im(z) = 0

}
, an antiderivative of 1

z
is given by log(z) (and

any other antiderivative in that domain should differ from log(z) by a constant). However,
log(z) cannot be continuously extended to the whole of C \ {0}.

Figure 1: Representation of the multivalued argument
function of log(z) around the origin. After n com-
plete loops, the argument takes up a value of n2πi. A
branch cut allows to lift this indeterminacy. Taken from:
https://en.wikipedia.org/wiki/Complex_logarithm.
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